

COLUTAv4 Update

Gabriel Matos O.B.O the COLUTA Team May 11, 2022

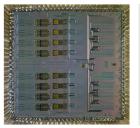
1 COLUTAv4 ADC & Testboard Overview

2 Performance Testing

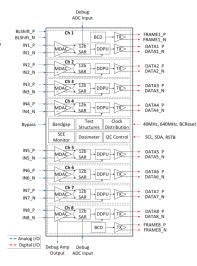
3 Status of BGA, Radiation & Production Testing

4 Conclusions

1 COLUTAv4 ADC & Testboard Overview


2 Performance Testing

3 Status of BGA, Radiation & Production Testing


4 Conclusions

COLUTAV4 ADC

- 8-channel, 15-bit, A/D converter
 - Channels are identical MDAC+SAR+DDPU
- Digitizes both gains of LAr calorimeter channels
 - Digitization at 40 MSPS, w/ >11-bit precision
 - Seamless interface to PA/S, lpGBT serializers
- TSMC 65nm LP CMOS
 - 5.584 x 5.456 mm² chip die
 - 4.3 million transistors
 - ullet 1.2 V operation with 2 $V_{pk\text{-}pk}$ differential input

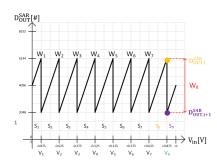
COLUTAv4 Testboard & Timeline

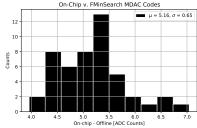
- Chips submitted Sept. 1st
- 100 chips ordered in total
 - 20 packaged in QFN100 received Dec. 20th
 - Other 80 will be packaged in BGA
- 2 first testboards assembled early Feb.
 - Socketed board for initial testing with option to solder down
 - Includes ALFE2 for PA/S integration
- Testing begun in late-Feb.
 - Preliminary results shown in <u>March LAr Week</u>
 - Since then 2 additional boards arrived
- This talk will provide an overview of recent CV4 test results and next steps
 - Including very preliminary integration results with PA/S!

Test Setup

- CV4 testboard channel layout
 - Chs. 1, 4: transformer input
 - Ch. 2: commercial amplifier input
 - Ch. 3: connected to onboard DAC
 - Chs. 5-8: connected to ALFE2
 - Chs. 6, 7: hi gain
 - Chs. 5, 8: lo gain
- Input signals provided by AWG
 - Connected directly to board with filter (for sine tests) and/or attenuators
 - Generates sine and LAr pulses
- DAC used for linear ramp input
- MDAC+SAR calibration performed with on-chip circuit
- Performance assessed for all 20 chips

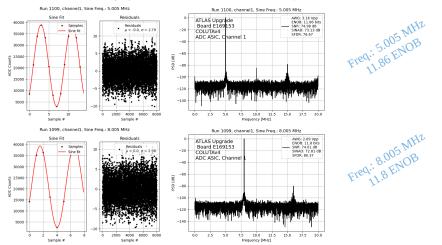
COLUTAv4 ADC & Testboard Overview

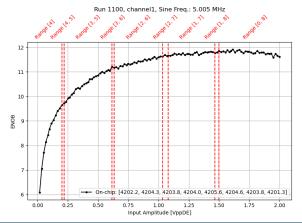

2 Performance Testing


3 Status of BGA, Radiation & Production Testing

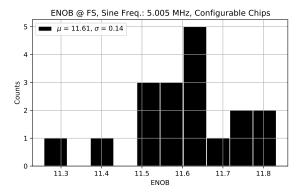
4 Conclusions

Optimization of MDAC On-Chip Weights


- On-chip MDAC calibration
 - MDAC contains 9 distinct subranges
 - Calibration processes "stitches" together subranges with a set of 8 weights to create a linear transfer function
 - Weights derived from on-chip circuit
- Offline (FMinSearch) calibration
 - Offline "fitted" calibration derives weights to yield best possible sine performance
 - Used only to debug on-chip process
- On-chip calibration constants systematically ~4-5 counts lower than offline constants
 - True for multiple CV4 channels and chips
 - Reason for this still under investigation...
 - For now added 4 count empirical offset to on-chip calib. for improved performance


Sine Wave Performance: Fits & FFTs

- Sine performance characterized fully with offset on-chip calibration
 - Sine fits (shown in red) and residuals for 5, 8 MHz inputs
 - FFTs at roughly full scale show >11.5b ENOB (spec. >11b @ 8MHz)

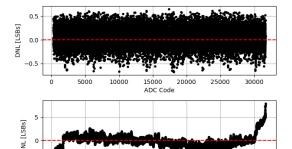

Sine Wave Performance: ENOB v. Amplitude

- Scan performance across input range by varying amplitude of the sine signal
 - On-chip calibration shows >11b performance for >500mVpp differential input
 - No noticeable kinks at MDAC transitions (in red) as had been seen with CV3
- Performance exceeds spec. across entire relevant frequency range as well

Sine Performance Across Chips & Yield

- Tested all 20 packaged chips \rightarrow 18/20 chips configurable!
 - Investigating remaining two, may be possible to recover
- Configurable chips show good performance out-of-the-box
 - Sine performance on channel 1 at \sim full scale >11b ENOB with on-chip calibration
 - On-chip calibration results shown here *without* offset \rightarrow still above spec.

DNL & INL Measurements


- Slow sine input (\sim 200 kHz) used to test for nonlinearity
- DNL computed from linearized transition voltages V_j and INL from linear fit
 - Results (shown in 15b LSBs) show no missing codes

$$DNL_j = \frac{V_{j+1} - V_j}{1.1 \text{ SB}} - 1$$

-0.67/+0.65 15b LSB (-0.07/+0.08 12b LSBs)

$$INL_j = \frac{V_j - V_{fit,j}}{1 LSB}$$

-5.51/+7.98 15b LSB (-0.69/+1.00 12b LSBs)

15000

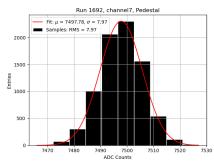
ADC Code

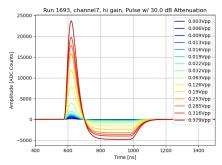
20000

25000

30000

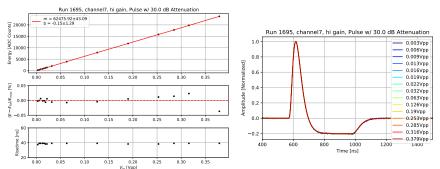
Run 1334, channel2, Slow Sine Freq.: 205.0 kHz


• DNL -0.07/+0.08 (spec. -1.0/+1.0 12b LSBs), INL <0.03% (spec. <0.1%)

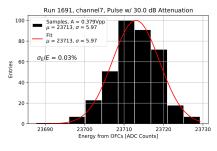

5000

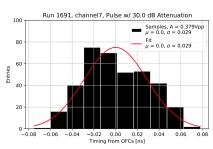
10000

Preliminary PA/S Integration: LAr Pulses


- Have been able to successfully talk to and configure the ALFE2
 - ALFE2 set to recommended settings
 - 25Ohm, 1nF capacitance load configuration
 - Pedestal noise of \sim 8 counts (hi gain) and \sim 2.5 counts (lo gain)
- Pulses sent from AWG onto ALFE2 channels (CV4 chs. 5-8)
 - 30 pulses interleaved to create fine resolution pulse for OFC analysis
 - Calibration provides smooth pulse shape and derivative, including across MDAC transitions (see backup)

Pulse Shape and Linearity


- All measurements still very preliminary, but promising
 - More careful quantitative studies to follow over next few months



- Normalized pulse shapes show no distortion across a range of input amplitudes
- Pulse nonlinearity <0.05% across dynamic range (spec 0.1% up to 60% full dyn. range, 1% at 80% full dyn. range, <4% at 100% full dyn. range)
 - Risetimes \sim 40ns and gain ratio of \sim 21.2 for current configuration

Energy and Timing Resolution

Use fine pulse to compute OFCs (as outlined here) and apply to large pulse close to saturating ADC to determine energy and timing

- · Preliminary achieved resolutions
 - $\sigma_E/E = 0.03\%$ (spec. $\sigma_E/E < 0.25\%$)
 - $\sigma_t = 29 \text{ ps (spec. } \overline{\sigma_t} < 100 \text{ ps)}$
 - This is dominated by jitter of trigger signal from on-board FPGA, not ADC

Investigating Multichannel Calibration

- Currently MDAC+SAR calibration is performed one channel at a time
 - In the end will have \sim 1524 FEB2 boards each with 32 COLUTA chips
 - Calibration process can take a long time even at the single-board level
- Preliminary investigation on calibrating multiple channels simultaneously
 - SAR architecture requires even/odd channels be calibrated separately
 - In CV3, even/odd calibration led to syst. shift (+4 to 5 counts) in MDAC constants
 - Changes to calibration circuit in CV4 implemented to prevent this

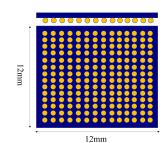
Calibration Mode	MDAC Weights							
Single Channel	3929.1	3931.4	3930.9	3930.8	3931.7	3931.1	3929.5	3928.1
Even/Odd	3930.5	3931.8	3931.8	3931.4	3932.8	3931.9	3930.6	3929.6
Diff.	+1.4	+0.4	+0.9	+0.6	+1.1	+0.8	+1.1	+1.5

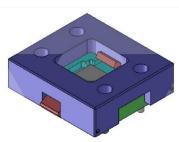
- On avg. <1 count difference between single channel and even/odd calibration
 - Preliminary conclusions, studies still ongoing...
- Both sets of constants yield comparable sine performance (see backup)

COLUTAv4 ADC & Testboard Overview

2 Performance Testing

3 Status of BGA, Radiation & Production Testing


4 Conclusions


COLUTAv4 BGA Packaging

BGA production in final steps of approval

- Vendor selected and all paperwork submitted
- Vendor schedule compatible with our pre-production requirements
- BGA packaging specifications
 - Low profile fine pitch BGA
 - Ball pitch: 0.8 mm Size: 12x12 mm

 - Pin count: 196
- Vendor is the same for PA/S chip
 - Will coordinate on test sockets
 - Initial studies on socket type in progress
 - Open top
 - SMD only (chip can be soldered)
 - Qualified for 500k to 700k cycles
 - · Can be automatically cleaned
 - Pogo pins qualified for 300k to 500k cycles
 - Manufacturer: VA Innovation

Radiation Testing

- Radiation board PCBs fabricated!
 - Being assembled with a \sim 3 week delivery quote (though we have seen delays in assembly)
- Radiation testing scheduled at MGH (Boston)
 - Dates currently set for Aug. 5/6th
 - Will repeat radiation performance tests done for CV3
 - Connect onboard DAC to CV4 input
 - Set DAC to analog code
 - Digitize samples with CV4 and histogram
 - Repeat for next DAC code
 - Focus on SEE tests → improved mitigation in digital blocks w/ new, larger spacing for redundant logic

CV3 Test Setup

Gabriel Matos

Production Testing

- Preparing for production testing of \sim 80k chips
- Multiple institutions contributing to the testing program
 - CV4 board sent out to Austin collaborators last week
 - Another will go to collaborators in Saclay in the near future

Paris-Saclay

- Existing robotic test setup being prepared for testing
- Initial socket testing studies

Austin

- Assembling robotic arm setup
- Long duration tests checking placement of "dummy" chips

1 COLUTAv4 ADC & Testboard Overview

2 Performance Testing

3 Status of BGA, Radiation & Production Testing

4 Conclusions

Conclusions

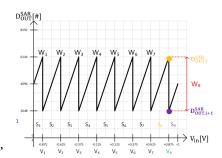
COLUTA: Custom 8-Channel 15-bit 40-MSPS ADC for the ATLAS Liquid Argon Calorimeter Readout

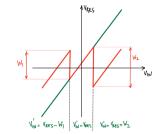
Rui Xu, Jaroslav Ban, Sarthak Kalani, Chen-kai Hsu, Subhajit Ray, Brian Kirby, Gabriel Matos, Julia Gonski, Andrew Smith, Devanshu Panchal, Michael Unanian, Xiangxing Yang, Nan Sun, John Parsons, Timothy Andeen, Peter Kinget

- Continued testing of CV4 chips since LAr Week
 - Characterized sine performance, nonlinearity, and calibration → all meet specs!
 - Tested multiple chips with 90% yield thus far
 - Early integration with ALFE2 shows promising results
 - Some features (i.e. offset to calibration constants) still need to be understood
- BGA production in final steps of approval and soon to be underway
- PCBs for radiation test received and being assembled now
- CV4 board sent out to Austin and progress towards production testing
- Paper submitted to IEEE NSS after discussion with LAr Speakers Committee

Thank You!

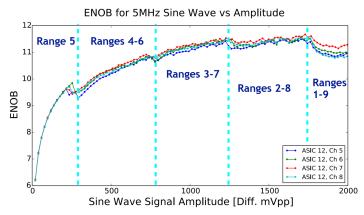
Backup

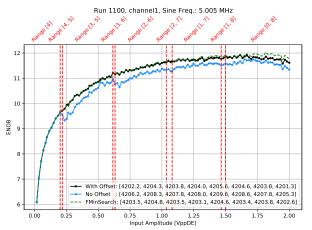

MDAC Calibration Process


- Procedure
 - lack Assert V_i
 - **2** Force S_i
 - **3** Measure D_{OUT}^{SAR}
 - Force S_{i+1}

 - **?** Repeat for i = 1 to 8
- DDPU uses W_1, \ldots, W_8 to "stitch together" subranges ande create a linear transfer fcn.

$$D_{\text{out}}^{\text{MDAC+SAR}} = D_{\text{out}}^{\text{SAR}} - 4096 + \sum_{i=1}^{8} W_i \cdot b_i$$

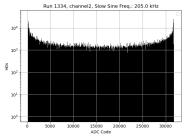

- All calibration circuitry is on-chip
- MDAC calibration is done after SAR calib.

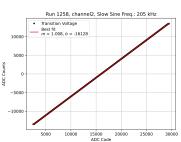

CV3 ENOB v. Amplitude

- Dips in ENOB at MDAC transitions (shown in cyan) show instances where the on-chip calibration does not properly stitch the subranges together
- Additional clock phase added into the MDAC resets the sampling capacitor after each cycle and eliminates the transition offset dips in CV4

Performance With/Without Calibration Offset

- Without MDAC calibration offset of -4 counts begin to get dips at MDAC subrange transitions (shown in red) as in CV3 case
 - Even with "non-optimized" calibration constants, dips are smaller than CV3 case and still achieve >11b ENOB after 750 mVppDE and >11.5b ENOB at full-scale

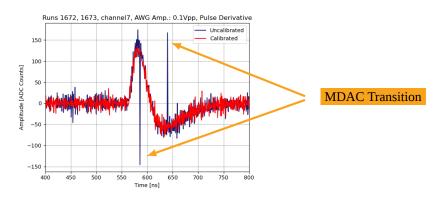



Slow Sine DNL/INL Methodology

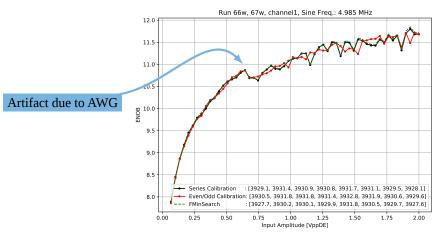
• Derive transition voltages (method outlined in this document)

$$V_j = -A\cos\left(\frac{\pi}{M}\sum_{k=0}^{j}H_k\right)$$

A= amplitude in ADC counts M= total number of samples $H_k=$ contents of kth sine histogram bin



- Transition voltages takes sine histogram (left) and linearizes it (right)
- Use to define DNL_j = $\frac{V_{j+1}-V_j}{1 \text{ LSB}} 1$ and INL_j = $\frac{V_j-V_{\text{fit},j}}{1 \text{ LSB}}$


LAr Pulse Derivative

- Visualizing MDAC calibration removing transition offsets in LAr pulse
 - An MDAC offset shows as a large spike in the derivative of the interleaved pulse
 - Calibration process removes offsets, producing a smooth pulse derivative

Single Ch. v. Even/Odd Calibration Performance

 Sine performance with both on-chip single channel (series) and even/odd calibration comparable to ideal performance using fitted weights

